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THE CLASSIFICATION OF TOPOLOGICAL 
MARKOV CHAINS 

ADAPTED SHIFT EQUIVALENCE 

BY 

WILLIAM PARRY* 

ABSTRACT 

This paper is motivated by Williams's problem: to show that shift equivalence of 
non-negative irreducible matrices implies topological equivalence of their 
associated topological Markov chains. Instead we prove that adapted shift 
equivalence implies (and is implied by) topological equivalence. 

Let S be an irreducible k x k zero-one matrix and let Xs be the shift invariant 

subset of 1-I~=_~{1,2,-..,k} consisting of those sequences x ={x.} such that 

S(x.,x.+l) = 1 for all n E Z. (The shift sends x to y where y. = x.+~.) The 

restriction of the shift to Xs is denoted by trs and (Sx, trs) is called a topological 
Markoo chain. 

The main problem which concerns us here is the topological classification of 

topological Markov chains. Under  what conditions does there exist a topological 

conjugacy between two topological Markov chains (Xs, trs), (XT, trT), i.e., a 

homeomorphism ~b of Xs onto Xs such that 4m's = err4,? 

In [3], Williams defines S, T to be strong shift equivalent if there exist 

non-negative integral rectangular matrices such that S = U~V~, V~U~ = U2V2, 
V2U2 . . . . .  T. He  proves that trs, err are topologically conjugate if and only if 

S, T are strong shift equivalent. 

It is easy to see, as Williams shows, that strong shift equivalence implies shift 
equivalence in the sense that there exists a positive integer l and non-negative 

integral rectangular matrices U, V such that 
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U S =  TU, S V =  VT, U V =  T r, V U = S  t . 

(! is called the lag of the equivalence.) 

It is conjectured (cf. [3]) that shift equivalence implies topological conjugacy 

but a proof is still lacking. I was invited to discuss this problem by the 

Sonderforschungsbereich Stochastische Mathematische Modelle, Institut fiir 

Angewandte Mathematik, Universit~it Heidelberg (Summer 1979), and I would 

like to take this opportunity to thank Professor W. Krieger for the invitation and 

for the useful discussions which ensued. 

w O n  shitt  e q u i v a l e n c e  

This seems an appropriate place to clarify an obscurity, pointed out by 

Krieger, which occurs in [12] concerning the definition of shift equivalence and a 

weaker version (cf. Remark 4 after Proposition 5.1). Here is a complete proof. 

PROPOSITION 1. In the definition of shift equivalence of irreducible non- 

negative integral matrices, U, V may be taken as rectangular matrices over Z 

rather than over Z +. 

PROOF. Suppose US = TU, S V  = VT, U V  = T t, V U  = S t, where U, V are 

defined over Z and $, T are defined over Z ~. We shall assume that $, T are 

aperiodic. A similar proof can be given in the periodic case. If/3 is the maximum 

eigenvalue of S and T then S"//3" converges to a matrix with columns 

A~r,..., )tkr where Sr = [Jr and r is a strictly positive vector. Moreover/3(Ur) = 

T(Ur)  and since Ur cannot be the zero vector by virtue of the equation 

V U  = S t, Ur must be " the"  vector corresponding to the maximum eigenvalue/3 

of T, i.e., Ur must be strictly positive or strictly negative. Hence US"~~3" 

converges to A1Ur,.. . ,  AkUr. Thus US"/~3 ~ converges to a matrix, each column 

of which is pure positive or pure negative. A similar argument can be given 

concerning the rows of the limit of US"~~3 ~. Hence US"~~3" converges to a 

strictly positive or strictly negative matrix. Thus for large n US" is "pure".  

Similarly VT" is "pure"  for large n. (We can select the same integer n.) 

Moreover US"VT"  = UVT 2" = T 2"§ which is strictly positive. Hence US", 

VT" have the same sign, which we may take to be positive, by replacing U, V by 

- U, - V if necessary. In conclusion we see that 

(US" )S  = T tUS" ) ,  S(VT")  = (VT")T, 

( U S " ) ( V T " )  = 7" 2"§ ( v ' r ~ ) ( u s  " ) = s ~'+,, 

i.e., S, T are shift equivalent with lag 2n +/ .  
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w Conjugacy and partitions 

The last section was something of a diversion. Let (Xs, trs), (XT, trr) be two 

topological Markov chains which are topologically conjugate by th. Let ~ be the 

standard partition (or state partition) of Xs, i.e., a = ( A , , " . , A k )  where 

Ai = {x : xo = i}. If a '  is the state partition of XT then it can be pulled back to Xs 
using 4~ ' and a suitable power of ors to yield a partition /3 satisfying 

(a) a "  = a v O's'a v . . -  v O's"a =>/3, 
(2.1) 

t ( b )  /3" > cr~"o~. 

For the moment we shall drop the suffix S and derive a sequence of "simpler" 

relationships between a, /3. The following is a consequence of (2.1)(a): 

( , 2 . ) ,_>  o~. v /3-+ '  _-> o, 2- 

(a  ~- v/3.+,),__> ot 2- v/3.,+2_> oe ~- v / 3  -§ 

( 2 . 2 )  . . . . . . . . .  

( ~ "  v/32"- ' )  ' -> o~ ~" v/32. _> a2.  v/32"- ' .  

Given two partitions ~:, r/ we define zero-one matrices indexed by ~ x 19 : 

(~ ,n) (A ,B)=I  if A N B ~ ,  

= 0 otherwise; 

(~, ~/)o (A, B) = 1 if A f) o ' - ' B ~ O ,  

= 0 otherwise. 

When ~ v ~r ',~ > r / >  ~: it can be proved (cf. [2]) that 

(~, n ) (n ,  ~)o = (~, ~)o, 

(n, ~)o(~, n)  = (n, n)`'. 

As a consequence of (2.2) we then see that (a 2", a 2"),, and (a:" v/3. 2", a 2" v/32")~ 

are strong shift equivalent and the number of steps in this equivalence is n. 

However, using (2.1)(b) rather than (2.1)(a) (and noticing that (a) and (b) are 

symmetrically related with respect to negative and positive iterations of o') we 

see that (/32%/32")~ and (ct 2" v/3 ~", a z" v/32"),, are strong shift equivalent "in n 

steps". 

To summarise we have 
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PROPOSITION 2. (a 2n, a2")o and (/32", ][~2n)o a r e  strong shift equivalent in 2n 

steps. 

COROI.t~RY (Williams [3]). If  ~rs and err are topologically conjugate then S 
and T are strong shift equivalent. 

Paoor. In fact (a, a),, is strong shift equivalent to (a 2", a2")o (in 2n steps) 

and (/3,/3),, is strong shift equivalent to ( /3 2., /3 2 . ),, (in 2n steps). To complete the 

proof we note that with a suitable indexing (a, a),, = S and (/3,/3)o = T. 

If we interpret a k • k zero-one matrix S as a directed graph, that is as k 

vertices with transitions between i and j allowed if and only if S(i, j ) =  1, then 

from the matrix S we can create new matrices S. with (9. vertices, where 0. is the 

number of (io, i , .  �9 i.) such that S(i,,, i,.+,) = 1. The vertices are precisely such 

"allowable words" (io, i , . - - ,  i.) and S. (io, i , . . . ,  i. ; jo,'" " , j . )=  1 if and only if 

i, = jo,-" . , i .  = j.-,. 
Evidently (a", a")o = S. and the following definition is indicated: The zero- 

one matrices S, T are said to be adapted (adapted shift equivalent) if there exists 

n E Z § such that S. and T. are shift equivalent with lag n. In view of the above 

remarks we have proved (with respect to the lag 2n of Proposition 2): 

THEOREM 1. If  Ors and orr are topologically conjugate then S and T are 
adapted. 

So far we have been considering two-sided topological Markov chains, that is, 

shifts defined on doubly infinite sequences. One-sided topological Markov 

X '  chains ( s, cry) are defined as shifts on the space of one-sided sequences 

x'~= {x E t-I {l '2'  " " k} : S(x"'x"+O= l } 

cry(x) = y where y. = x.+~. 

If we define V. (S) to be the group of integer valued functions f on X~ which 

are dependent on only the first n + 1 variables (/(x) = f(xo, x~, . . . ,  x.)) then it is 

easy to see that the transpose S* of the matrix S has an interpretation as a 

homomorphism of Vo(S) to itself: 

(S ' f )  (x) = ~, f(y). 
o s y = x  

The transpose S* of the matrix $. then has the interpretation 

(S : f ) ( x )=  E I(Y) 
o s y  ~ x 
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which is a homomorphism of V. (S) into Vn-I(S)C Vn (S). Evidently adapted 
shift equivalence has the following meaning: There exists n ~ Z § and order- 

preserving homomorphisms A : V. (S)---* V. (T), B : V. (T)--* V. (S) such that 

A S ~ =  T~A, S~B = BT~, 

= T n  . B A  = S *", A B  *" 

03. Adapted shift equivalence 

In the last section we showed that topological conjugacy implies adapted shift 
equivalence. We shall now prove the converse. 

THEOREM 2. If  S, T are adapted shift equivalent then the topological Markov 

chains (Xs, (rs), (Xr, (rT) are topologically conjugate. 

PROOF. For convenience of presentation we shall assume that the lag is 2 so 

that 

US2 = T2U, S2V-- VT2, 

UV = T~, VU = S~, for some non-negative integral matrices U, V. Arrows will 

indicate allowable transitions. Vertices for $2 are triples, so that we have, for 
example, 

(Xo, X,, X2)""~ (Xl, X2, X3) -'~ (X2, X3, X4) "-'~ (X3, X4, X5) 

(y;, y'~, y~) (yl, y2, y3) 

The question arises as to whether there is a transition from (y;,yl ,  y;) to 
(y,, y2, y3). 

We see from commutativity that there must exist (yo, y~, y2) such that 

(XO~ X b X2) 

(yo, y,, y~)~ (y,, y~, y~) 

and therefore there exist transitions 

f f  
(yoy~y~)~ (y,y~y3) 
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However " x "  above must necessarily be x2 to comply with the commutativity 

(XoX,X~)--, (x,x~x~)--, (x2x~x,) 

(yoyly2) 

Thus there are the two paths from (Xo, x~, x2) to (x2, x3, x,) passing through the 

" y "  triples (y~, y~,y~') and (yo, y~, y2) which correspond to a unique " x "  path 

(Xo, x,, x2)---~ (x2, x3, x,). We conclude that (yo, y~, y2) - (y~, y ~, y~) and therefore 

the transition (y~, y ~, y~) = (yo, Y~, y2)---~ (y~, y2, y3) is allowed. 
Let x ~ Xs, then we de fne  

where the transitions 

are allowed. Evidently 

r = (yoy,y2) 

(XoX,X~)--, (x,x~x~)--, (x~x3x,) 

(yoyly2) 

4,(x) = {#,(x., x.+,,..., x.+,)} 

is then a well defined continuous map of Xs into XT. 

In a similar way we can define, for y E Xz, q~(yo, yl, y2y3y4) = (x2, x3, x4) where 

the transitions 

(x~, x3, x,) 

(yo, Y~, y2)---)(y,, y2, y3)---)(y2, y3, y,) 

are allowed and 

~ (y )  = {~(y.y.+,,..., y.+,)}. 

Again ~b is a well defined continuous map of XT into Xs. It is clear that 

4~rs = crTq,, qxrT = ~r,q, 

and 

#,4, = 2 ~r~, 4~, = ~r~. 
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Hence ~b, $ are surjective and since trs, trT are homeomorphisms it follows that 

tk, qJ are also homeomorphisms. Thus Ors, trr are topologically conjugate. 

04. Williams's problem 

So far we are unable to solve Williams's problem: does shift equivalence imply 

topological conjugacy? We have presented Theorems 1 and 2 in the hope that 

they may lead to a solution, since there is some hope that shift equivalence may 

imply adapted shift equivMence. 

We conclude with some observations in this direction using Williams's 

technique of splitting matrices into products of division and amalgamation 

matrices. 

In the following we shall only consider rectangular non-negative integral 

matrices with non-trivial rows and non-trivial columns. 

Any such matrix M can be written as the product M = D A  of a division 

matrix (all of whose columns are unit vectors, no trivial rows) and an a m a l g a m a -  

tion matrix (a transpose of a division matrix). Moreover if M = D t A ~  where D,, 

At are division and amalgamation matrices respectively then D t  = D P  and 

A t  = P - t A ,  where P is a permutation matrix. The product of two divisions is a 

division and the product of two amalgamations is an amalgamation. 

Suppose we are given a shift equivalence between two zero-one irreducible 

matrices: can we use this information to construct an adapted shift equivalence? 

Specifically suppose 

(4.1) U S  = TU,  S V  = VT, U V  = T 2, V U  = S2; 

does there exist U2, V2 such that 

(4.2) U2S2 = T2U2, S2V2 = V2T2, U2V2 = T~, V2U2 = S~? 

Without going into the lengthy details we can answer this question negatively 

with the following example: 

/i  )/11 1/l! 1~ 001 0 11 0i/( 1 1 00 11 i/ 
l/ 1/f1~ 1 1 1 1 1 -_ 1 1 

1 1 1 1 1 1 1 0 1 
0 1 
1 0 
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(i i)/ 11 (i 1~ 1/2 11 !/ 
0 1 
1 0 

(However, if 

U = is replaced by 

then matrices /./2, V2 satisfying (4.2) can be found. Brian Marcus brought my 

attention to the curious nature of this shift equivalence, in a rather different 

context.) 

For the moment we shall ignore this counterexample and work positively 

toward a solution of (4.2). We assume that (4.1) holds. In particular we have 

U S  = TU.  This equation alone implies the existence of U~ and amalgamations 

A], a~ and divisions D~, d~ such that S = D~A~, T = d~a~, where 

A t 19, 

B, 

is commutative (cf. [1]). We can now repeat the same argument with respect to 

the equation U,(A~D~) = (a~d~)U~ (i.e. U1$, = 7"1U~) to obtain the commutative 

diagram: 

UI ~ ./~dt o~1 Ul UI' u2r UtU 
o, ~, ~ ~  

Thus we have U2S2 = T2Uz since $2 = A2D2, T2 = a2d2. In a similar way we can 

obtain an equation $2V2 = V2T2. In other words the first two equations of (4.2) 

can be obtained. 

Now let us look at the third and fourth equations of (4.2). From (4.1) we obtain 

the commutative diagram: 
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U U 

o , ' ~  ~ d ,  

0 z ~-----"~ - d z 

where U = DA,  V = da are division-amalgamation splittings, oJ~ can also be 

split, say, oJ~ = DA.  Thus ~ A J ,  = D1D2A2AI are two splittings. Hence by a 

suitable permutation modification, i f  necessary, we have the commutative 

diagram: 

A= ~ z  Dj 

A 

O 

01 

where the amalgamation and division matrices ,~, d are provided in an analogous 

way to a, d (i.e. A d  = da, dld2a2a~ = D d a a  ). 

If we define u2 = ~ and v2 = fila then v2u2 = S~, u2v2 = T~ so that the third 

and fourth equations of (4.2) are satisfied. However ,  f rom our counterexample 

we cannot claim that u2 = U2, v2 = V2, i.e., we cannot claim that all four 

equations of (4.2) are satisfied simultaneously. Although we cannot guarantee 
U 2 that u2S2 = T2u2, $2v2 = v2T2, it is obvious that 2S2 T~u2, S~v2 = v2T~. T h e  

problem is that we have two maps u2, U2 satisfying the commutat ive  diagram: 

OZ dZ 

If we write u2 = ~ and U2 = 8 ' ~ '  as amalgamation-division splittings then it is 

clear that 8 = ~ ' P  and ot = 0 ~ '  for some permutat ions P, O. In other words, u2, 

[./2 differ by the existence of a permutat ion "inside" the amalgamation-division 

splitting. 
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This is as far as we can go. Since we have a counter-exa/nple we know that 

there can exist a permutation obstruction to deriving (4.2) from (4.1) by way of 

our procedure. Perhaps we may have to replace (4.1) by other shift equivalences 

before adopting our procedure. In fact, in our counter-example if we replace U 

by 

then (4.2) can be satisfied. Perhaps instead of U one should consider US" for 

various n E Z § and instead of V one should consider S"V. 
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